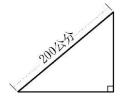
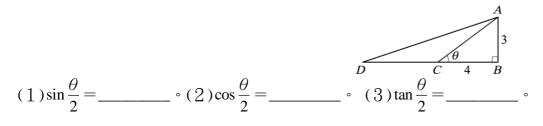
110年中山女高 升高二暑假作業 範圍:三角比

1.有一木板的一端置於地面,另一端用磚頭墊高(如附圖)。假設木板長為 200 公分,磚頭每塊的厚度為 6 公分。欲使木板的傾斜角大於 40° ,則磚頭至少要用幾塊?_____。 ($\sin 40^\circ \approx 0.6428$, $\cos 40^\circ \approx 0.7660$)

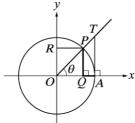


- 2. 試求下列各式的值:

 - (2) 計算 $(\sin 17^{\circ} + \cos 17^{\circ})^{2} + (\sin 73^{\circ} \cos 73^{\circ})^{2} =$ _______。
- 3. 一根筆直的竹竿立於地面 B 處,當它被風吹斷 \overline{AC} 後,端點 A 恰與地面接觸,構成直角三角形 ABC,若測得 $\angle CAB=37^\circ$, $\overline{AB}=5.6$ 公尺,則未斷裂前,該竹竿的長度為多少公尺?($\sin 37^\circ=0.6$)
 (A)10.5 公尺 (B)11.2 公尺 (C)11.8 公尺 (D)12.2 公尺 (E)12.6 公尺
- 4. 如圖, $\triangle ABD$ 為直角三角形,其中 $\overline{AB}=3$, $\overline{BC}=4$, $\angle B=90^{\circ}$, $\angle ACB=\theta$,且 $\overline{AC}=\overline{CD}$,試求:



5. 如圖,圓 O 為一單位圓,且 $\overline{AT} = \frac{3}{4}$,試求四邊形 QATP 中

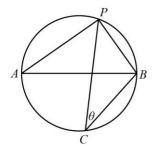


- $(1)\overline{PQ} = \underline{\qquad} \circ (2)\overline{QA} = \underline{\qquad} \circ$
- 6. 設 θ 為銳角,且 $\tan\theta=2$,則 $\frac{2\sin\theta-\cos\theta}{3\sin\theta+\cos\theta}=$ ______。
- 7. 設 θ 是銳角,且 $\cos\theta = \tan\theta$,試求 $\sin\theta =$ ______
- 8. 設 θ 為銳角,若 $\sin \theta \cos \theta = \frac{1}{2}$,則:
 - (1) $\sin\theta\cos\theta =$ _____ \circ
 - $(2)\sin^3\theta + \cos^3\theta = \underline{\hspace{1cm}} \circ$
- 9. 小華在離古樹 10 公尺的位置,測出樹頂的仰角是 51°,求樹頂到地面的高度為_____公尺。(利用計算機四捨五入至小數點後第一位)

- 10. 如右圖, 直角三角形 AEF 內接於矩形 ABCD 中, 若 \overline{AF} =1, $\angle EAF$ = 20°, $\angle BAE$ = 40°, $\angle FGA$ = 90°, 則下列選項哪些正確?
 - (A) $\overline{AE} = \sin 20^{\circ}$ (B) $\overline{BE} = \cos 20^{\circ} \sin 40^{\circ}$ (C) \angle CFE=50° (D) $\overline{CE} = \sin 20^{\circ} \cos 40^{\circ}$
 - (E) $\overline{FG} = \sin 20^{\circ} \cos 40^{\circ} + \cos 20^{\circ} \sin 40^{\circ}$
- 11. ()下列各式中,恆大於 0 者有哪些?

(A)
$$\sin 37^{\circ} - \cos 37^{\circ}$$
 (B) $\tan 53^{\circ} - 1$ (C) $\cos 25^{\circ} - \frac{\sqrt{3}}{2}$ (D) $\sin 61^{\circ} - \tan 61^{\circ}$ (E) $\frac{1}{2} - \cos 61^{\circ}$

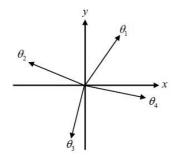
12. 如附圖, \overline{AB} 為直徑,且 $\overline{AB}=10$,P,C 為圓上的點,若 $\sin\theta=\frac{3}{5}$,求 $\overline{PA}+\overline{PB}$ 之值為_____。



13. 判斷各象限中三角比的正負情形,並完成下表:

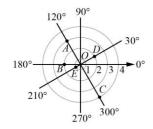
θ終邊所 在象限	第一象限	第二象限	第三象限	第四象限
(x, y)	(+,+)	(-,+)	(-,-)	(+,-)
$\sin\theta$				
$\cos\theta$				
$tan\theta$				

- 14. (1)若點 $(\sin\theta, -\cos\theta)$ 在第三象限內,則 θ 是第幾象限角?
 - (2)已知點 $P(\tan\theta,\cos\theta)$ 在第三象限內,則點 $Q(\sin\theta,\cos\theta)$ 在第幾象限內?
- 15. 坐標平面上 4 個有向角 θ_1 、 θ_2 、 θ_3 、 θ_4 的標準位置角終邊如附圖所示,則下列敘述哪些正確?_____。

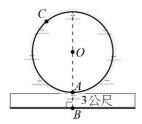


- (A) $1 > \sin \theta_1 > \sin \theta_2 > 0$ (B) $0 > \sin \theta_4 > \sin \theta_3 > -1$
- (C) $|\tan\theta_2| > |\tan\theta_1|$ (D) $\tan\theta_3 > 1$ (E) $\cos\theta_4 > \cos\theta_1 > \cos\theta_3 > \cos\theta_2$
- 16. 已知 $\cos\theta = \frac{3}{5}$ 且 $270^{\circ} < \theta < 360^{\circ}$,試求 $\sin\theta =$ ______。
- 17. 設 $\sin\theta = -\frac{8}{17}$,且 θ 為第四象限角,求 $\cos\theta =$ ________________________。
- 18. 已知 $\sin\theta = -\frac{1}{3}$,且 θ 是第三象限角,試求 $\cos\theta$ 和 $\tan\theta$ 的值。
- 19. 設 θ 是第三象限角且滿足 $2\sin\theta+1=\cos\theta$,試求 $\cos\theta=$ ______, $\tan\theta=$ _____。
- 20. 坐標平面上,設 O 為原點, θ 為第二象限角且 P(x,2) 為終邊上一點,已知 $\overline{OP}=3$,則 $\tan\theta=$ _____。
- 21. 若 0°≤θ≤180°且 sin 2011°=cosθ,則 θ=____。

23. 如附圖,試求A,B 兩點的極坐標。



- 24. (1) 試求直角坐標A(-3,0), $B(-\sqrt{3},1)$ 的極坐標。
 - (2) 試求極坐標 P [5,90°], Q [$4\sqrt{2}$,135°]的直角坐標。
- 25. 有一休園日下午,阿南測試遊樂場的摩天輪,如右圖,摩天輪基座 \overline{AB} 的高度為 3 公尺,軸心為 O 點,半徑為 15 公尺,而此摩天輪等速旋轉。若每旋轉一圈需 6 分鐘,阿南在 A 處乘坐,當摩天輪依逆時針方向連續旋轉 15 分 36 秒的時間後,突然停電,此時阿南的位置正好在 C 處,試問阿南所在位置離地面高度約多少公尺?______(按計算機四捨五入取至整數位)

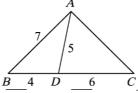


- 26. 已知直線 $\frac{x}{2} + \frac{y}{6} = 1$ 的斜角為 θ ,則 $\sin \theta$ 之值為_____。
- 27. $\triangle ABC$ 中,若 \overline{AC} =12, \overline{BC} =10, $\angle C$ =120°,則 $\triangle ABC$ 面積為_____。
- $28. \triangle ABC$ 中, $\angle A: \angle B: \angle C=1:2:3$,則 $\overline{BC}: \overline{AC}: \overline{AB}=$
 - (A)1:2:3 (B)3:4:5 (C)1: $\sqrt{3}$:2 (D) $\sqrt{2}$:1: $\sqrt{3}$ (E) $\sqrt{3}$:2: $\sqrt{5}$
- 29. 在 \triangle ABC 中,已知 $\overline{AB} = 2\sqrt{3}$, $\overline{AC} = 2\sqrt{2}$, $\angle B = 45^{\circ}$,則 \triangle ABC 外接圓半徑為_____。
- 30. 假設甲、乙、丙三鎮兩兩之間的距離皆為 20 公里。兩條筆直的公路交於丁鎮,其中之一通過甲、乙兩鎮而另一通過丙鎮。今在一比例精準的地圖上量得兩公路的夾角為 45°,則丙、丁兩鎮間的距離約為

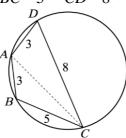
(參考數值: $\sqrt{2} \approx 1.414$, $\sqrt{3} \approx 1.732$, $\sqrt{5} \approx 2.236$, $\sqrt{6} \approx 2.449$)

(A)24.5 公里 (B)25 公里 (C)25.5 公里 (D)26 公里 (E)26.5 公里

31. 如附圖, $\triangle ABC$ 中,D 為 \overline{BC} 上一點,若 \overline{AB} =7, \overline{BD} =4, \overline{AD} =5, \overline{CD} =6,則 \overline{AC} =_____。

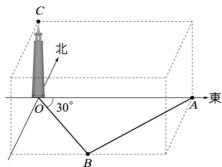


32. 如附圖,設 ABCD 為圓內接四邊形,若 $\overline{AB}=3$, $\overline{BC}=5$, $\overline{CD}=8$, $\overline{AD}=3$,則:



(1) $\angle B$ =____。(2)對角線 \overline{AC} =___。

- 33. <u>阿金</u>的家高度為 21 公尺,某天<u>阿金</u>站在自家最高處看附近一商業大樓頂端的仰角為 α ,底端的俯角為 β ,若 $\tan\alpha = \frac{5}{2}$ $\cos \beta = \frac{4}{5}$,試求該商業大樓的高度。(<u>阿金</u>的身高可忽略不計)
- 34. 某人自塔的正東方 A 點測得塔頂 C 仰角 30° ,而在塔的東 30° 南 B 點測得塔頂 C 仰角 45° ,若 A 與 B 相距 60 公尺,則 塔高為____公尺。



- 35. 已知 $\triangle ABC$ 的三邊長為a,b,c,試求下列哪一個選項的條件成立時, $\triangle ABC$ 必為鈍角三角形?
 - $(A)a^2+b^2 < c^2$
- (B) $\sin A = \sin B = \frac{1}{3}$
- (C)a : b : c = 5 : 6 : 7
- (D)b=4, c=6, $\angle B=30^{\circ}$
- (E)△ABC 的三高長度為9,12,15
- 36. 航海是人類在海上航行,跨越海洋,由一方陸地去到另一方陸地的活動。在從前是一種冒險行為,因為人類的地理知識 有限,彼岸是不可知的世界。從冒險行為,慢慢的轉變於一種商業行為。若有艘漁船從港口O出航,依序到A,B,C三 點。

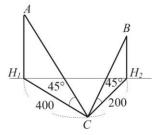
B點距離港口O,2單位且在O的東20°南(由正東方順時針轉20°);

C點距離港口O, 2單位且在O的東80°南(由正東方順時針轉80°),

試回答下列問題:

- (1) 在坐標平面上以極坐標形式標出 A, B, C 三點坐標。
- (2) 試求出三角形△ABC 面積為____。
- 37. 溜索,是一種古代的渡河工具,它以一條鋼索或粗繩,連接山谷兩側,一頭高,另一頭低,人可由高向低溜過河谷。不 僅渡人外,亦可渡貨物、牲畜等。中國隨著少數民族地區的發展,大部分已被橋樑所取代,只有極少數的地區仍在使 用。假設在兩山的山頂A,B兩點用繩子連接以方便交換物資與通行,且在地面上一點C測得到兩山腳的距離為400公 尺與 200 公尺,且其仰角均為 45° ,若 $\angle ACB = 60^{\circ}$,如附圖所示,試回答以下問題:
 - (1) 山的高度有可能為多少?
- (A) 100 公尺 (B) 200 公尺 (C) 300 公尺 (D) 400 公尺 (E) 500 公尺

(2) 溜繩的長度 \overline{AB} 為多少?



- 38. 在 $\triangle ABC$ 中,已知 $50^{\circ} \le \angle A < \angle B \le 60^{\circ}$,下列哪些選項正確?
 - (A) $\sin A < \sin B$
 - (B) $\sin B < \sin C$
 - (C) $\cos A < \cos B$
 - (D) $\sin C < \cos C$
 - (E) $\overline{AB} < \overline{BC}$

39. 在 $\triangle ABC$ 中, \overline{AD} 交 \overline{BC} 於 D 點, \overline{BE} 交 \overline{AD} 於 E 點,且 $\angle ACB = 30^{\circ}$,

 $\angle EDB = 60^{\circ}$, $\angle AEB = 120^{\circ}$ 。若 $\overline{CD} = 15$, $\overline{ED} = 7$,則 $\overline{AB} = \underline{\hspace{1cm}}$ 。

40. 如圖所示(只是示意圖),將梯子 \overline{AB} 靠在與地面垂直的牆AC上,測得與水平地面的夾

 $\angle ABC$ 為 60° 。將在地面上的底 B 沿著地面向外拉 51 公分到點 F (即 $\overline{FB} = 51$ 公分),此

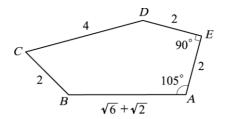
梯子 \overline{EF} 與地面的夾角 $\angle EFC$ 之正弦值為 $\sin \angle EFC = 0.6$,則梯子長 $\overline{AB} =$ _____公分。

F B C

辟

41. 最近數學家發現一種新的可以無縫密舖平面的凸五邊形 ABCDE,其示意圖如右。關於這五邊形,下列哪些選項正確?

- (A) $\overline{AD} = 2\sqrt{2}$
- (B) $\angle DAB = 45^{\circ}$
- (C) $\overline{BD} = 2\sqrt{6}$
- (D) $\angle ABD = 45^{\circ}$
- (E)△*BCD* 的面積為 $2\sqrt{2}$



42. 請問 sin73°、sin146°、sin219°、sin292°、sin365°這五個數值的中位數是哪一個?

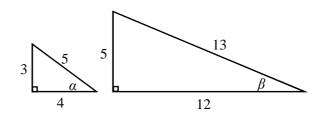
- (A) sin73°
- (B) sin146°
- (C) sin219°
- (D) sin292°
- (E) sin365°

43. 在 \triangle ABC 中,已知 $\angle A=20^{\circ}$ 、 $\overline{AB}=5$ 、 $\overline{BC}=4$ 。下列哪些選項正確?

- (A)可以確定 $\angle B$ 的餘弦值
- (B)可以確定 $\angle C$ 的正弦值
- (C)可以確定 $\triangle ABC$ 的面積
- (D)可以確定△ABC的內切圓半徑
- (E)可以確定△ABC的外接圓半徑

44. 已知兩個直角三角形三邊長分別為 3,4,5 imes 5,12,13 , α,β 分別為它們的一角 , 如下圖所示。試選出正確的選項。

- $(1) \quad \sin \alpha > \sin \beta > \sin 30^{\circ}$
- (2) $\sin \alpha > \sin 30^{\circ} > \sin \beta$
- (3) $\sin \beta > \sin \alpha > \sin 30^{\circ}$
- (4) $\sin \beta > \sin 30^{\circ} > \sin \alpha$
- (5) $\sin 30^{\circ} > \sin \alpha > \sin \beta$



45. 平面上有一等形 ABCD, 其中 $\overline{AB} = \overline{BC} = \sqrt{2}$, $\overline{AD} = \overline{CD} = 2$, $\angle BAD = 135^{\circ}$ 。

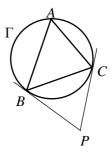
則 AC = ____。 (化為最簡根式)

46. 如圖 , $\triangle ABC$ 為銳角三角形 , P 為 $\triangle ABC$ 外接圓 Γ 外的一點 ,且 \overline{PB} 與 \overline{PC} 都與圓 Γ 相切 。 設 $\angle BPC = \theta$,試

問 cos A 的值為下列哪一個選項?

- (1) $\sin 2\theta$
- (2) $\frac{\sin\theta}{2}$
- (3) $\sin \frac{\theta}{2}$

- (4) $\frac{\cos\theta}{2}$
- (5) $\cos \frac{\theta}{2}$



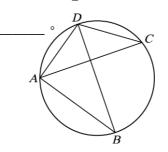
47. 在 $\triangle ABC$ 中,已經知道 $\overline{AB}=4$ 和 $\overline{AC}=6$,此時尚不足以確定 $\triangle ABC$ 的形狀與大小。但是,只要再知道某些條件(例

如:再知道 \overline{BC} 的長度),就可確定 ΔABC 唯一的形狀與大小。試選出正確的選項。

- (1) 如果再知道 cos A 的值,就可確定 ΔABC 唯一的形狀與大小
- (2) 如果再知道 $\cos B$ 的值,就可確定 ΔABC 唯一的形狀與大小
- (3) 如果再知道 $\cos C$ 的值,就可確定 ΔABC 唯一的形狀與大小
- (4) 如果再知道 $\triangle ABC$ 的面積,就可確定 $\triangle ABC$ 唯一的形狀與大小
- (5) 如果再知道 $\triangle ABC$ 的外接圓半徑,就可確定 $\triangle ABC$ 唯一的形狀與大小

48. 設A,B,C,D 為圓上的相異四點。已知圓的半徑為 $\frac{7}{2}$, $\overline{AB}=5$,兩線段 \overline{AC} 與 \overline{BD} 互相垂直,如圖所示(此為示意

圖,非依實際比例)。則 \overline{CD} 的長度為_



- 49. 有一時鐘的時針長度為 5 公分,分針長度為 8 公分。假設時針針尖每分鐘所移動的弧長都相等。
 - (1) 試求時針針尖每分鐘所移動的弧長。
 - (2) 已知時針針尖與分針針尖距離為7公分,求時針和分針所夾的角度。
 - (3) 試問在六點與六點半之間,時針針尖與分針針尖的距離最接近7公分是在六點幾分(取至最接近的整數分鐘)?

- 50. 在直角坐標平面上,考慮以原點為頂點,而以x軸的正向為始邊的廣義角。設P(3, -7)在廣義角 θ 的終邊上,請問以下哪些敘述是正確的?
 - (A)A(-3,-7) 在有向角 $180^{\circ}-\theta$ 的終邊上
 - (B) B (-3,7) 在有向角 $-\theta$ 的終邊上
 - (C) C(3,7) 在有向角 θ -540°的終邊上
 - (D) D(7,3) 在有向角 $\theta+90$ °的終邊上
 - (E) E (-21, 9) 在有向角 $450^{\circ} \theta$ 的終邊上。

解答

1.22 2.(1)2(2)2 3.(B) 4. (1)
$$\frac{\sqrt{10}}{10}$$
; (2) $\frac{3\sqrt{10}}{10}$; (3) $\frac{1}{3}$ 5.(1) $\frac{3}{5}$ (2) $\frac{1}{5}$ 6. $\frac{3}{7}$ 7. $\frac{-1+\sqrt{5}}{2}$ 8. (1) $\frac{3}{8}$ (2) $\frac{5\sqrt{7}}{16}$ 9. 12.3 10.BDE 11.BCE 12. 14 13.

θ終邊所	第一象	第二象	第三象	第四象
在象限	限	限	限	限
(x, y)	(+,+	(-,+	(-,-	(+,-
)))))
$\sin\theta$	+	+	_	_
$\cos\theta$	+			+
tanθ	+	_	+	_

16.
$$-\frac{4}{5}$$
; $-\frac{4}{3}$ 17. $\frac{15}{17}$; $-\frac{8}{15}$ 18. $\cos\theta = -\frac{2\sqrt{2}}{3}$; $\tan\theta = \frac{\sqrt{2}}{4}$ 19. $-\frac{3}{5}$; $\frac{4}{3}$ 20. $-\frac{2\sqrt{5}}{5}$ 21. 121°

22.
$$120^{\circ}$$
, 420° , 480° 23. A [3, 120°], B [2, 180°] 24. (1) A [3, 180°], B [2, 150°] (2) P (0, 5), Q (-4, 4) 25. $30 \& R$ 26. $-\frac{3}{\sqrt{10}}$ 27. $30\sqrt{3}$ 28. C 29. 2 30. A 31. 7 32. (1) 120° (2) 7 33.91 $\& R$ 34.60 35. ABDE

36. (1)
$$A \left(\sqrt{3}, 10^{\circ} \right) ; B \left(2, -20^{\circ} \right) ; C \left(2, -80^{\circ} \right) ; (2) \frac{\sqrt{3}}{2}$$
 37. (1) (B)(D) (2) 200 $\sqrt{6}$ 38. AB

39. 13 40.170 41.AD 42.E 43.BE 44.B 45.
$$\frac{2\sqrt{10}}{5}$$
 46.(3) 47.(1)(2) 48. $2\sqrt{6}$

49. (1)
$$\frac{\pi}{72}$$
 公分 (2) 60 度 (3)6 點 22 分 50.ADE